2 resultados para 060105 Cell Neurochemistry

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

'Tissue' transglutaminase (tTG) selectively accumulates in cells undergoing apoptosis both in vivo and in vitro. Considering the central role played by mitochondria in apoptosis, we investigated the relationships existing amongst tTG expression, apoptosis and mitochondrial function. To this aim we studied the mechanisms of apoptosis in a neuronal cell line (SK-N-BE (2)) in which the tTG-expression was driven by a constitutive promoter. Furthermore, a tet-off inducible promoter was also used in 3T3 fibroblastic cells used as control. Both cell lines, when expressing tTG, appeared 'sensitized' to apoptosis. Strikingly, we found major differences in the morphological features of mitochondria among cell lines in the absence of apoptotic stimuli. In addition, these ultrastructural characteristics were associated with specific functional features: (i) constitutively hyperpolarized mitochondria and (ii) increased reactive oxygen intermediates production. Importantly, after mitochondrial-mediated apoptosis by staurosporine, a rapid loss of mitochondrial membrane potential was found in tTG cells only. Taken together, these results seem to suggest that, via hyperpolarization, tTG might act as a 'sensitizer' towards apoptotic stimuli specifically targeted to mitochondria. These results could also be of pathogenetic relevance for those diseases that are characterized by increased tTG and apoptotic rate together with impaired mitochondrial function, e.g. in some neurodegenerative disease.